物理科学探疑-网友天空-混沌学探秘
混沌学探秘
计
94 991422 刘 洋
1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。
![]() |
一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列 中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。 |
与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“
正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。
混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用 P
n表示n代后该物种极限数目的百分比,则著名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后, “罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度、气压、风向、速度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报![]() |
者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的
“蝴蝶效应”。 动力系统涉及上述类型和其他类型的物理及化学过程。它的研究目的是预测 “过程”的最终发展结果。这就是说:如果完全知道在时间序列中一个过程的过去历史,能否预测它未来怎样?尤其能否预测该系统的长期或渐进的特性?这无疑是一个意义重大的问题。然而,即使是一个理想化的仅有一个变量的最简单的动力系统也会具有难以预测的基本上是随机的特性。动力系 |
统中的一点或一个数的连续迭代产生的序列称为轨道。如果初始条件的微小改变使其相应的轨道在一定的迭代次数之内也只有微小改变,则动力系统是稳定的,此时,任意接近于给定初值的另一个初值的轨道可能与原轨道相差甚远,是不可预测的。因此,弄清给定动力系统中轨道不稳定的点的集合是及其重要的。所有其轨道不稳定的点构成的集合是这个动力系统的混沌集合,并且动力系统中参数的微小改变可以引起混沌集合结构的急剧变化。这种研究是及其复杂的,但是引入了计算机就可以形象地看到这种混沌集合的结构,看清它是一个简单集合还是一个复杂集合,以及随着动力系统本身的变化它是如何变化的。这也是混沌学为何会随着计算机技术的进步而进步的原因所在,所谓的分形也正是从此处进入混沌动力系统研究的。
我们简要谈一下混沌与分形的关系,混沌学研究的是无序中的有序,许多现象即使遵循严格的确定性规则,但大体上仍是无法预测的,比如大气中的湍流,人的心脏的跳动等等。混沌事件在不同的时间标度下表现出相似的变化模式,与分形在空间标度下表现的相似性十分相象。混沌主要讨论非线性动力系统的不稳、发散的过程,但系统在相空间总是收敛于一定的吸引子,这与分形的生成过程十分相象。混沌学与分形学在很大程度上依赖于计算机的进步,这对纯数学的传统观念提出了挑战,计算机技术不仅使这两个领域中的一些最新发现成为可能,同时因其图形直观的表现形式也极大地激发了科学家与公众的兴趣与认识,起到了推广作用。分形与混沌的一致性并非偶然,在混沌集合的计算机图像中,常常是轨道不稳定的点集形成了分形。所以这些分形由一个确切的规则(对应一个动力系统)给出:它们是一个动力系统的混沌集,是各种各样的奇异吸引子。因此,分形艺术的美丽就是混沌集合的美丽,对分形艺术的研究就是对混沌动力学研究的一部分。
混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。
混沌学的前途不可限量。
2000年5月21 日
参考书目:
《混沌的本质》(《THE
ESSENCE OF CHAOS》)E.N.洛伦兹
《量子混沌运动》
徐躬耦
《确定性的终结—时间、混沌与新自然法则》
伊利亚.普里高津
版权所有,保留一切权力,未经授权使用将追究法律责任 版权说明 © Copyright Authors
物理科学探疑